William Gosset was a brewer, but had an interest in statistics. He found the
estimation of the
probability for the standard deviate z unreliable if the observations were
few. He derived a correction of the probability estimate according to sample
size and called it t. Gosset published his papers under the pseudonym of
Student and this became known as Student's t.
Student's t allows the use of a small number of measurements to estimate
what may be true of the whole population. This forms the basis of modern
inferential statistics, where a small number of observations are made, and the
results are generalized to the wider population.
The t distribution curve is wider than the normal one. Therefore, a
larger area (or higher probability) of being greater than a particular deviate
is obtained compared to the normal distribution. This difference varies with
sample size (degrees of freedom), such that the probability of t approaches that
of z when the sample size increases towards infinity. Conceptually, this is
represented by the diagram to the left.
With infinite degrees of freedom (i.e., a large sample size), the one tailed t and z have
the same value for a particular probability, but with fewer cases, t will be
larger than z in obtaining the same probability.
One and two tails
When calculating t, a one tail or two tail model needs to be specify. A one
tailed t is conceptually similar to the z, and assumes all the excluded
values are on one side (tail) of the normal distribution, as shown in the following diagram.
A two tailed t however, assumes the area excluded are on both sides (tails) of the t distribution,
so that each side contains only half of the excluded area, as shown in the following
diagram.
In calculations
involving the confidence interval, the two tailed t is usually used.
For examples :
- For a two tail model calculating 95% confidence interval using a sample of 21 cases, the t value for
p=0.05 (p=0.025 excluded on each of the two tails) and degrees of freedom=20 is 2.09 is obtained. In other words, the 95% confidence interval
is mean±2.09SD.
- For a one tail model, p=0.05 (all 5% excluded in one tail) the t value is 1.72. The 95% confidence
interval is either -∞ to mean+1.72SD, or mean-1.72SD to +∞, depending on which tail is used.
The other panels on this page are
- Calculations: Javascript program to calculate the probability of t
- Codes: R and Python codes to calculate the probability of t
- Tables: Tables for probability of t
References
https://en.wikipedia.org/wiki/Student%27s_t-distributionWikipedia on t
Javascript algorithm adapted from Press WH, Flannery BP, Teukolsky SA, and Vetterling WT. (1994) Numerical recipes in Pascal. Cambridge University Press ISBN 0-521-37516-9. p.189
Calculation are presented in
maroon and results produced presented in
navy
R Codes
TToP<-function(t,degF) #function to calculate probability from t and df
{
p1 = 1 - pt(t,df=degF) #probability 1 tail
p2 = p1 * 2 #orobability 2 tail
return (c(p1,p2)) #returns the 2 probabilities as a list
}
TToP(2.57,5) #list of values of probability, 1 and 2 tail
0.02501766 0.05
PToT<-function(p,degF) #function to calculate t from probability and df
{
t1 = qt(1-p, df=degF) #t 1 tail
t2 = qt(1-p / 2, df=degF) #t 2 tail
return (c(t1,t2)) #returns the 2 t values as a list
}
PToT(0.025,5) #values of t, 1 and 2 tail
2.570582 2.015048
Python Codes
Header and Library
import scipy.stats as st
Probability of t
def TToP(t,df):
""" Calculate Probability from t and df """
p1 = 1 - st.t.cdf(abs(t), df)
p2 = p1 * 2
return p1,p2
print(TToP(2.57,5))
(0.02501765843103365, 0.0500353168620673)
def PToT(p,df):
""" Calculate t from probability """
t1 = st.t.ppf((1.0 - p), df)
t2 = st.t.ppf((1.0 - p * 2), df)
return t1,t2
print(PToT(0.025,5))
(2.5705818366147395, 2.015048372669157)
The tables present critical t values for :
- Type I Error (α) of 0.1, 0.05, and 0.01 as major columns
- One and Two tail models as minor columns
- Degrees of freedom 1 to 250, 3 abreast, in rows, divided into 5 tables
For example, for α=0.05 with 20 degrees of freedom, the critical t values are 1.7247 (one tail) and
2.0860 (two tail)
df=1:50
α | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 |
df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail |
1 | 3.0777 | 6.3138 | 6.3138 | 12.7065 | 31.8193 | 63.6551 | 2 | 1.8856 | 2.9200 | 2.9200 | 4.3026 | 6.9646 | 9.9247 | 3 | 1.6378 | 2.3534 | 2.3534 | 3.1824 | 4.5407 | 5.8408 |
4 | 1.5332 | 2.1319 | 2.1319 | 2.7764 | 3.7470 | 4.6041 | 5 | 1.4759 | 2.0150 | 2.0150 | 2.5706 | 3.3650 | 4.0322 | 6 | 1.4398 | 1.9432 | 1.9432 | 2.4469 | 3.1426 | 3.7074 |
7 | 1.4149 | 1.8946 | 1.8946 | 2.3646 | 2.9980 | 3.4995 | 8 | 1.3968 | 1.8595 | 1.8595 | 2.3060 | 2.8965 | 3.3554 | 9 | 1.3830 | 1.8331 | 1.8331 | 2.2621 | 2.8214 | 3.2498 |
10 | 1.3722 | 1.8124 | 1.8124 | 2.2282 | 2.7638 | 3.1693 | 11 | 1.3634 | 1.7959 | 1.7959 | 2.2010 | 2.7181 | 3.1058 | 12 | 1.3562 | 1.7823 | 1.7823 | 2.1788 | 2.6810 | 3.0545 |
13 | 1.3502 | 1.7709 | 1.7709 | 2.1604 | 2.6503 | 3.0123 | 14 | 1.3450 | 1.7613 | 1.7613 | 2.1448 | 2.6245 | 2.9768 | 15 | 1.3406 | 1.7530 | 1.7530 | 2.1314 | 2.6025 | 2.9467 |
16 | 1.3368 | 1.7459 | 1.7459 | 2.1199 | 2.5835 | 2.9208 | 17 | 1.3334 | 1.7396 | 1.7396 | 2.1098 | 2.5669 | 2.8983 | 18 | 1.3304 | 1.7341 | 1.7341 | 2.1009 | 2.5524 | 2.8784 |
19 | 1.3277 | 1.7291 | 1.7291 | 2.0930 | 2.5395 | 2.8609 | 20 | 1.3253 | 1.7247 | 1.7247 | 2.0860 | 2.5280 | 2.8454 | 21 | 1.3232 | 1.7207 | 1.7207 | 2.0796 | 2.5176 | 2.8314 |
22 | 1.3212 | 1.7172 | 1.7172 | 2.0739 | 2.5083 | 2.8188 | 23 | 1.3195 | 1.7139 | 1.7139 | 2.0686 | 2.4998 | 2.8073 | 24 | 1.3178 | 1.7109 | 1.7109 | 2.0639 | 2.4922 | 2.7970 |
25 | 1.3163 | 1.7081 | 1.7081 | 2.0596 | 2.4851 | 2.7874 | 26 | 1.3150 | 1.7056 | 1.7056 | 2.0555 | 2.4786 | 2.7787 | 27 | 1.3137 | 1.7033 | 1.7033 | 2.0518 | 2.4727 | 2.7707 |
28 | 1.3125 | 1.7011 | 1.7011 | 2.0484 | 2.4671 | 2.7633 | 29 | 1.3114 | 1.6991 | 1.6991 | 2.0452 | 2.4620 | 2.7564 | 30 | 1.3104 | 1.6973 | 1.6973 | 2.0423 | 2.4572 | 2.7500 |
31 | 1.3095 | 1.6955 | 1.6955 | 2.0395 | 2.4528 | 2.7440 | 32 | 1.3086 | 1.6939 | 1.6939 | 2.0369 | 2.4487 | 2.7385 | 33 | 1.3077 | 1.6924 | 1.6924 | 2.0345 | 2.4448 | 2.7333 |
34 | 1.3069 | 1.6909 | 1.6909 | 2.0322 | 2.4411 | 2.7284 | 35 | 1.3062 | 1.6896 | 1.6896 | 2.0301 | 2.4377 | 2.7238 | 36 | 1.3055 | 1.6883 | 1.6883 | 2.0281 | 2.4345 | 2.7195 |
37 | 1.3049 | 1.6871 | 1.6871 | 2.0262 | 2.4315 | 2.7154 | 38 | 1.3042 | 1.6859 | 1.6859 | 2.0244 | 2.4286 | 2.7115 | 39 | 1.3036 | 1.6849 | 1.6849 | 2.0227 | 2.4258 | 2.7079 |
40 | 1.3031 | 1.6839 | 1.6839 | 2.0211 | 2.4233 | 2.7045 | 41 | 1.3025 | 1.6829 | 1.6829 | 2.0196 | 2.4208 | 2.7012 | 42 | 1.3020 | 1.6820 | 1.6820 | 2.0181 | 2.4185 | 2.6981 |
43 | 1.3016 | 1.6811 | 1.6811 | 2.0167 | 2.4162 | 2.6951 | 44 | 1.3011 | 1.6802 | 1.6802 | 2.0154 | 2.4142 | 2.6923 | 45 | 1.3006 | 1.6794 | 1.6794 | 2.0141 | 2.4121 | 2.6896 |
46 | 1.3002 | 1.6787 | 1.6787 | 2.0129 | 2.4102 | 2.6870 | 47 | 1.2998 | 1.6779 | 1.6779 | 2.0117 | 2.4083 | 2.6846 | 48 | 1.2994 | 1.6772 | 1.6772 | 2.0106 | 2.4066 | 2.6822 |
49 | 1.2991 | 1.6766 | 1.6766 | 2.0096 | 2.4049 | 2.6800 | 50 | 1.2987 | 1.6759 | 1.6759 | 2.0086 | 2.4033 | 2.6778 | 51 | 1.2984 | 1.6753 | 1.6753 | 2.0076 | 2.4017 | 2.6757 |
df=51:100
α | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 |
df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail |
51 | 1.2984 | 1.6753 | 1.6753 | 2.0076 | 2.4017 | 2.6757 | 52 | 1.2980 | 1.6747 | 1.6747 | 2.0066 | 2.4002 | 2.6737 | 53 | 1.2977 | 1.6741 | 1.6741 | 2.0057 | 2.3988 | 2.6718 |
54 | 1.2974 | 1.6736 | 1.6736 | 2.0049 | 2.3974 | 2.6700 | 55 | 1.2971 | 1.6730 | 1.6730 | 2.0041 | 2.3961 | 2.6682 | 56 | 1.2969 | 1.6725 | 1.6725 | 2.0032 | 2.3948 | 2.6665 |
57 | 1.2966 | 1.6720 | 1.6720 | 2.0025 | 2.3936 | 2.6649 | 58 | 1.2963 | 1.6715 | 1.6715 | 2.0017 | 2.3924 | 2.6633 | 59 | 1.2961 | 1.6711 | 1.6711 | 2.0010 | 2.3912 | 2.6618 |
60 | 1.2958 | 1.6706 | 1.6706 | 2.0003 | 2.3901 | 2.6603 | 61 | 1.2956 | 1.6702 | 1.6702 | 1.9996 | 2.3890 | 2.6589 | 62 | 1.2954 | 1.6698 | 1.6698 | 1.9990 | 2.3880 | 2.6575 |
63 | 1.2951 | 1.6694 | 1.6694 | 1.9983 | 2.3870 | 2.6561 | 64 | 1.2949 | 1.6690 | 1.6690 | 1.9977 | 2.3860 | 2.6549 | 65 | 1.2947 | 1.6686 | 1.6686 | 1.9971 | 2.3851 | 2.6536 |
66 | 1.2945 | 1.6683 | 1.6683 | 1.9966 | 2.3842 | 2.6524 | 67 | 1.2943 | 1.6679 | 1.6679 | 1.9960 | 2.3833 | 2.6512 | 68 | 1.2941 | 1.6676 | 1.6676 | 1.9955 | 2.3824 | 2.6501 |
69 | 1.2939 | 1.6673 | 1.6673 | 1.9950 | 2.3816 | 2.6490 | 70 | 1.2938 | 1.6669 | 1.6669 | 1.9944 | 2.3808 | 2.6479 | 71 | 1.2936 | 1.6666 | 1.6666 | 1.9939 | 2.3800 | 2.6468 |
72 | 1.2934 | 1.6663 | 1.6663 | 1.9935 | 2.3793 | 2.6459 | 73 | 1.2933 | 1.6660 | 1.6660 | 1.9930 | 2.3785 | 2.6449 | 74 | 1.2931 | 1.6657 | 1.6657 | 1.9925 | 2.3778 | 2.6439 |
75 | 1.2929 | 1.6654 | 1.6654 | 1.9921 | 2.3771 | 2.6430 | 76 | 1.2928 | 1.6652 | 1.6652 | 1.9917 | 2.3764 | 2.6421 | 77 | 1.2926 | 1.6649 | 1.6649 | 1.9913 | 2.3758 | 2.6412 |
78 | 1.2925 | 1.6646 | 1.6646 | 1.9909 | 2.3751 | 2.6404 | 79 | 1.2924 | 1.6644 | 1.6644 | 1.9904 | 2.3745 | 2.6395 | 80 | 1.2922 | 1.6641 | 1.6641 | 1.9901 | 2.3739 | 2.6387 |
81 | 1.2921 | 1.6639 | 1.6639 | 1.9897 | 2.3733 | 2.6379 | 82 | 1.2920 | 1.6636 | 1.6636 | 1.9893 | 2.3727 | 2.6371 | 83 | 1.2918 | 1.6634 | 1.6634 | 1.9889 | 2.3721 | 2.6364 |
84 | 1.2917 | 1.6632 | 1.6632 | 1.9886 | 2.3716 | 2.6356 | 85 | 1.2916 | 1.6630 | 1.6630 | 1.9883 | 2.3710 | 2.6349 | 86 | 1.2915 | 1.6628 | 1.6628 | 1.9879 | 2.3705 | 2.6342 |
87 | 1.2914 | 1.6626 | 1.6626 | 1.9876 | 2.3700 | 2.6335 | 88 | 1.2912 | 1.6623 | 1.6623 | 1.9873 | 2.3695 | 2.6328 | 89 | 1.2911 | 1.6622 | 1.6622 | 1.9870 | 2.3690 | 2.6322 |
90 | 1.2910 | 1.6620 | 1.6620 | 1.9867 | 2.3685 | 2.6316 | 91 | 1.2909 | 1.6618 | 1.6618 | 1.9864 | 2.3680 | 2.6309 | 92 | 1.2908 | 1.6616 | 1.6616 | 1.9861 | 2.3676 | 2.6303 |
93 | 1.2907 | 1.6614 | 1.6614 | 1.9858 | 2.3671 | 2.6297 | 94 | 1.2906 | 1.6612 | 1.6612 | 1.9855 | 2.3667 | 2.6292 | 95 | 1.2905 | 1.6610 | 1.6610 | 1.9852 | 2.3662 | 2.6286 |
96 | 1.2904 | 1.6609 | 1.6609 | 1.9850 | 2.3658 | 2.6280 | 97 | 1.2903 | 1.6607 | 1.6607 | 1.9847 | 2.3654 | 2.6275 | 98 | 1.2903 | 1.6606 | 1.6606 | 1.9845 | 2.3650 | 2.6269 |
99 | 1.2902 | 1.6604 | 1.6604 | 1.9842 | 2.3646 | 2.6264 | 100 | 1.2901 | 1.6602 | 1.6602 | 1.9840 | 2.3642 | 2.6259 | 101 | 1.2900 | 1.6601 | 1.6601 | 1.9837 | 2.3638 | 2.6254 |
df=101:150
α | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 |
df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail |
101 | 1.2900 | 1.6601 | 1.6601 | 1.9837 | 2.3638 | 2.6254 | 102 | 1.2899 | 1.6599 | 1.6599 | 1.9835 | 2.3635 | 2.6249 | 103 | 1.2898 | 1.6598 | 1.6598 | 1.9833 | 2.3631 | 2.6244 |
104 | 1.2897 | 1.6596 | 1.6596 | 1.9830 | 2.3627 | 2.6240 | 105 | 1.2897 | 1.6595 | 1.6595 | 1.9828 | 2.3624 | 2.6235 | 106 | 1.2896 | 1.6593 | 1.6593 | 1.9826 | 2.3620 | 2.6230 |
107 | 1.2895 | 1.6592 | 1.6592 | 1.9824 | 2.3617 | 2.6225 | 108 | 1.2894 | 1.6591 | 1.6591 | 1.9822 | 2.3614 | 2.6221 | 109 | 1.2894 | 1.6589 | 1.6589 | 1.9820 | 2.3611 | 2.6217 |
110 | 1.2893 | 1.6588 | 1.6588 | 1.9818 | 2.3607 | 2.6212 | 111 | 1.2892 | 1.6587 | 1.6587 | 1.9816 | 2.3604 | 2.6208 | 112 | 1.2892 | 1.6586 | 1.6586 | 1.9814 | 2.3601 | 2.6204 |
113 | 1.2891 | 1.6585 | 1.6585 | 1.9812 | 2.3598 | 2.6200 | 114 | 1.2890 | 1.6583 | 1.6583 | 1.9810 | 2.3595 | 2.6196 | 115 | 1.2890 | 1.6582 | 1.6582 | 1.9808 | 2.3592 | 2.6192 |
116 | 1.2889 | 1.6581 | 1.6581 | 1.9806 | 2.3589 | 2.6189 | 117 | 1.2888 | 1.6580 | 1.6580 | 1.9805 | 2.3586 | 2.6185 | 118 | 1.2888 | 1.6579 | 1.6579 | 1.9803 | 2.3583 | 2.6181 |
119 | 1.2887 | 1.6578 | 1.6578 | 1.9801 | 2.3581 | 2.6178 | 120 | 1.2886 | 1.6577 | 1.6577 | 1.9799 | 2.3578 | 2.6174 | 121 | 1.2886 | 1.6575 | 1.6575 | 1.9798 | 2.3576 | 2.6171 |
122 | 1.2885 | 1.6574 | 1.6574 | 1.9796 | 2.3573 | 2.6168 | 123 | 1.2885 | 1.6573 | 1.6573 | 1.9794 | 2.3571 | 2.6164 | 124 | 1.2884 | 1.6572 | 1.6572 | 1.9793 | 2.3568 | 2.6161 |
125 | 1.2884 | 1.6571 | 1.6571 | 1.9791 | 2.3565 | 2.6158 | 126 | 1.2883 | 1.6570 | 1.6570 | 1.9790 | 2.3563 | 2.6154 | 127 | 1.2883 | 1.6570 | 1.6570 | 1.9788 | 2.3561 | 2.6151 |
128 | 1.2882 | 1.6568 | 1.6568 | 1.9787 | 2.3559 | 2.6148 | 129 | 1.2882 | 1.6568 | 1.6568 | 1.9785 | 2.3556 | 2.6145 | 130 | 1.2881 | 1.6567 | 1.6567 | 1.9784 | 2.3554 | 2.6142 |
131 | 1.2880 | 1.6566 | 1.6566 | 1.9782 | 2.3552 | 2.6139 | 132 | 1.2880 | 1.6565 | 1.6565 | 1.9781 | 2.3549 | 2.6136 | 133 | 1.2880 | 1.6564 | 1.6564 | 1.9779 | 2.3547 | 2.6133 |
134 | 1.2879 | 1.6563 | 1.6563 | 1.9778 | 2.3545 | 2.6130 | 135 | 1.2879 | 1.6562 | 1.6562 | 1.9777 | 2.3543 | 2.6127 | 136 | 1.2878 | 1.6561 | 1.6561 | 1.9776 | 2.3541 | 2.6125 |
137 | 1.2878 | 1.6561 | 1.6561 | 1.9774 | 2.3539 | 2.6122 | 138 | 1.2877 | 1.6560 | 1.6560 | 1.9773 | 2.3537 | 2.6119 | 139 | 1.2877 | 1.6559 | 1.6559 | 1.9772 | 2.3535 | 2.6117 |
140 | 1.2876 | 1.6558 | 1.6558 | 1.9771 | 2.3533 | 2.6114 | 141 | 1.2876 | 1.6557 | 1.6557 | 1.9769 | 2.3531 | 2.6112 | 142 | 1.2875 | 1.6557 | 1.6557 | 1.9768 | 2.3529 | 2.6109 |
143 | 1.2875 | 1.6556 | 1.6556 | 1.9767 | 2.3527 | 2.6106 | 144 | 1.2875 | 1.6555 | 1.6555 | 1.9766 | 2.3525 | 2.6104 | 145 | 1.2874 | 1.6554 | 1.6554 | 1.9765 | 2.3523 | 2.6102 |
146 | 1.2874 | 1.6554 | 1.6554 | 1.9764 | 2.3522 | 2.6099 | 147 | 1.2873 | 1.6553 | 1.6553 | 1.9762 | 2.3520 | 2.6097 | 148 | 1.2873 | 1.6552 | 1.6552 | 1.9761 | 2.3518 | 2.6094 |
149 | 1.2873 | 1.6551 | 1.6551 | 1.9760 | 2.3516 | 2.6092 | 150 | 1.2872 | 1.6551 | 1.6551 | 1.9759 | 2.3515 | 2.6090 | 151 | 1.2872 | 1.6550 | 1.6550 | 1.9758 | 2.3513 | 2.6088 |
df=151:200
α | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 |
df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail |
151 | 1.2872 | 1.6550 | 1.6550 | 1.9758 | 2.3513 | 2.6088 | 152 | 1.2871 | 1.6549 | 1.6549 | 1.9757 | 2.3511 | 2.6085 | 153 | 1.2871 | 1.6549 | 1.6549 | 1.9756 | 2.3510 | 2.6083 |
154 | 1.2871 | 1.6548 | 1.6548 | 1.9755 | 2.3508 | 2.6081 | 155 | 1.2870 | 1.6547 | 1.6547 | 1.9754 | 2.3507 | 2.6079 | 156 | 1.2870 | 1.6547 | 1.6547 | 1.9753 | 2.3505 | 2.6077 |
157 | 1.2870 | 1.6546 | 1.6546 | 1.9752 | 2.3503 | 2.6075 | 158 | 1.2869 | 1.6546 | 1.6546 | 1.9751 | 2.3502 | 2.6073 | 159 | 1.2869 | 1.6545 | 1.6545 | 1.9750 | 2.3500 | 2.6071 |
160 | 1.2869 | 1.6544 | 1.6544 | 1.9749 | 2.3499 | 2.6069 | 161 | 1.2868 | 1.6544 | 1.6544 | 1.9748 | 2.3497 | 2.6067 | 162 | 1.2868 | 1.6543 | 1.6543 | 1.9747 | 2.3496 | 2.6065 |
163 | 1.2868 | 1.6543 | 1.6543 | 1.9746 | 2.3495 | 2.6063 | 164 | 1.2867 | 1.6542 | 1.6542 | 1.9745 | 2.3493 | 2.6062 | 165 | 1.2867 | 1.6542 | 1.6542 | 1.9744 | 2.3492 | 2.6060 |
166 | 1.2867 | 1.6541 | 1.6541 | 1.9744 | 2.3490 | 2.6058 | 167 | 1.2866 | 1.6540 | 1.6540 | 1.9743 | 2.3489 | 2.6056 | 168 | 1.2866 | 1.6540 | 1.6540 | 1.9742 | 2.3487 | 2.6054 |
169 | 1.2866 | 1.6539 | 1.6539 | 1.9741 | 2.3486 | 2.6052 | 170 | 1.2865 | 1.6539 | 1.6539 | 1.9740 | 2.3485 | 2.6051 | 171 | 1.2865 | 1.6538 | 1.6538 | 1.9739 | 2.3484 | 2.6049 |
172 | 1.2865 | 1.6537 | 1.6537 | 1.9739 | 2.3482 | 2.6047 | 173 | 1.2865 | 1.6537 | 1.6537 | 1.9738 | 2.3481 | 2.6046 | 174 | 1.2864 | 1.6537 | 1.6537 | 1.9737 | 2.3480 | 2.6044 |
175 | 1.2864 | 1.6536 | 1.6536 | 1.9736 | 2.3478 | 2.6042 | 176 | 1.2864 | 1.6536 | 1.6536 | 1.9735 | 2.3477 | 2.6041 | 177 | 1.2864 | 1.6535 | 1.6535 | 1.9735 | 2.3476 | 2.6039 |
178 | 1.2863 | 1.6535 | 1.6535 | 1.9734 | 2.3475 | 2.6037 | 179 | 1.2863 | 1.6534 | 1.6534 | 1.9733 | 2.3474 | 2.6036 | 180 | 1.2863 | 1.6534 | 1.6534 | 1.9732 | 2.3472 | 2.6034 |
181 | 1.2862 | 1.6533 | 1.6533 | 1.9731 | 2.3471 | 2.6033 | 182 | 1.2862 | 1.6533 | 1.6533 | 1.9731 | 2.3470 | 2.6031 | 183 | 1.2862 | 1.6532 | 1.6532 | 1.9730 | 2.3469 | 2.6030 |
184 | 1.2862 | 1.6532 | 1.6532 | 1.9729 | 2.3468 | 2.6028 | 185 | 1.2861 | 1.6531 | 1.6531 | 1.9729 | 2.3467 | 2.6027 | 186 | 1.2861 | 1.6531 | 1.6531 | 1.9728 | 2.3466 | 2.6025 |
187 | 1.2861 | 1.6531 | 1.6531 | 1.9727 | 2.3465 | 2.6024 | 188 | 1.2861 | 1.6530 | 1.6530 | 1.9727 | 2.3463 | 2.6022 | 189 | 1.2860 | 1.6529 | 1.6529 | 1.9726 | 2.3463 | 2.6021 |
190 | 1.2860 | 1.6529 | 1.6529 | 1.9725 | 2.3461 | 2.6019 | 191 | 1.2860 | 1.6529 | 1.6529 | 1.9725 | 2.3460 | 2.6018 | 192 | 1.2860 | 1.6528 | 1.6528 | 1.9724 | 2.3459 | 2.6017 |
193 | 1.2859 | 1.6528 | 1.6528 | 1.9723 | 2.3458 | 2.6015 | 194 | 1.2859 | 1.6528 | 1.6528 | 1.9723 | 2.3457 | 2.6014 | 195 | 1.2859 | 1.6527 | 1.6527 | 1.9722 | 2.3456 | 2.6013 |
196 | 1.2859 | 1.6527 | 1.6527 | 1.9721 | 2.3455 | 2.6012 | 197 | 1.2859 | 1.6526 | 1.6526 | 1.9721 | 2.3454 | 2.6010 | 198 | 1.2858 | 1.6526 | 1.6526 | 1.9720 | 2.3453 | 2.6009 |
199 | 1.2858 | 1.6525 | 1.6525 | 1.9720 | 2.3452 | 2.6008 | 200 | 1.2858 | 1.6525 | 1.6525 | 1.9719 | 2.3451 | 2.6007 | 201 | 1.2858 | 1.6525 | 1.6525 | 1.9718 | 2.3451 | 2.6005 |
df=201:250
α | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 | | 0.1 | 0.05 | 0.01 |
df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail | df | 1 tail | 2 tail | 1 tail | 2 tail | 1 tail | 2 tail |
201 | 1.2858 | 1.6525 | 1.6525 | 1.9718 | 2.3451 | 2.6005 | 202 | 1.2858 | 1.6524 | 1.6524 | 1.9718 | 2.3449 | 2.6004 | 203 | 1.2857 | 1.6524 | 1.6524 | 1.9717 | 2.3448 | 2.6003 |
204 | 1.2857 | 1.6524 | 1.6524 | 1.9717 | 2.3448 | 2.6002 | 205 | 1.2857 | 1.6523 | 1.6523 | 1.9716 | 2.3447 | 2.6000 | 206 | 1.2857 | 1.6523 | 1.6523 | 1.9715 | 2.3446 | 2.5999 |
207 | 1.2857 | 1.6522 | 1.6522 | 1.9715 | 2.3445 | 2.5998 | 208 | 1.2856 | 1.6522 | 1.6522 | 1.9714 | 2.3444 | 2.5997 | 209 | 1.2856 | 1.6522 | 1.6522 | 1.9714 | 2.3443 | 2.5996 |
210 | 1.2856 | 1.6521 | 1.6521 | 1.9713 | 2.3442 | 2.5994 | 211 | 1.2856 | 1.6521 | 1.6521 | 1.9713 | 2.3442 | 2.5993 | 212 | 1.2856 | 1.6521 | 1.6521 | 1.9712 | 2.3441 | 2.5992 |
213 | 1.2855 | 1.6520 | 1.6520 | 1.9712 | 2.3440 | 2.5991 | 214 | 1.2855 | 1.6520 | 1.6520 | 1.9711 | 2.3439 | 2.5990 | 215 | 1.2855 | 1.6520 | 1.6520 | 1.9711 | 2.3438 | 2.5989 |
216 | 1.2855 | 1.6520 | 1.6520 | 1.9710 | 2.3437 | 2.5988 | 217 | 1.2855 | 1.6519 | 1.6519 | 1.9710 | 2.3437 | 2.5987 | 218 | 1.2854 | 1.6519 | 1.6519 | 1.9709 | 2.3436 | 2.5986 |
219 | 1.2854 | 1.6518 | 1.6518 | 1.9709 | 2.3435 | 2.5985 | 220 | 1.2854 | 1.6518 | 1.6518 | 1.9708 | 2.3434 | 2.5984 | 221 | 1.2854 | 1.6518 | 1.6518 | 1.9708 | 2.3434 | 2.5982 |
222 | 1.2854 | 1.6517 | 1.6517 | 1.9707 | 2.3433 | 2.5981 | 223 | 1.2854 | 1.6517 | 1.6517 | 1.9707 | 2.3432 | 2.5980 | 224 | 1.2853 | 1.6517 | 1.6517 | 1.9706 | 2.3431 | 2.5979 |
225 | 1.2853 | 1.6517 | 1.6517 | 1.9706 | 2.3431 | 2.5978 | 226 | 1.2853 | 1.6516 | 1.6516 | 1.9705 | 2.3430 | 2.5977 | 227 | 1.2853 | 1.6516 | 1.6516 | 1.9705 | 2.3429 | 2.5976 |
228 | 1.2853 | 1.6516 | 1.6516 | 1.9704 | 2.3428 | 2.5975 | 229 | 1.2853 | 1.6515 | 1.6515 | 1.9704 | 2.3428 | 2.5974 | 230 | 1.2852 | 1.6515 | 1.6515 | 1.9703 | 2.3427 | 2.5974 |
231 | 1.2852 | 1.6515 | 1.6515 | 1.9703 | 2.3426 | 2.5973 | 232 | 1.2852 | 1.6514 | 1.6514 | 1.9703 | 2.3425 | 2.5972 | 233 | 1.2852 | 1.6514 | 1.6514 | 1.9702 | 2.3425 | 2.5971 |
234 | 1.2852 | 1.6514 | 1.6514 | 1.9702 | 2.3424 | 2.5970 | 235 | 1.2852 | 1.6514 | 1.6514 | 1.9701 | 2.3423 | 2.5969 | 236 | 1.2851 | 1.6513 | 1.6513 | 1.9701 | 2.3422 | 2.5968 |
237 | 1.2851 | 1.6513 | 1.6513 | 1.9700 | 2.3422 | 2.5968 | 238 | 1.2851 | 1.6513 | 1.6513 | 1.9700 | 2.3421 | 2.5967 | 239 | 1.2851 | 1.6513 | 1.6513 | 1.9699 | 2.3420 | 2.5966 |
240 | 1.2851 | 1.6512 | 1.6512 | 1.9699 | 2.3420 | 2.5965 | 241 | 1.2851 | 1.6512 | 1.6512 | 1.9698 | 2.3419 | 2.5964 | 242 | 1.2851 | 1.6512 | 1.6512 | 1.9698 | 2.3419 | 2.5963 |
243 | 1.2850 | 1.6511 | 1.6511 | 1.9698 | 2.3418 | 2.5962 | 244 | 1.2850 | 1.6511 | 1.6511 | 1.9697 | 2.3417 | 2.5961 | 245 | 1.2850 | 1.6511 | 1.6511 | 1.9697 | 2.3416 | 2.5961 |
246 | 1.2850 | 1.6511 | 1.6511 | 1.9696 | 2.3416 | 2.5960 | 247 | 1.2850 | 1.6510 | 1.6510 | 1.9696 | 2.3415 | 2.5959 | 248 | 1.2850 | 1.6510 | 1.6510 | 1.9696 | 2.3415 | 2.5958 |
249 | 1.2850 | 1.6510 | 1.6510 | 1.9695 | 2.3414 | 2.5957 | 250 | 1.2849 | 1.6510 | 1.6510 | 1.9695 | 2.3414 | 2.5956 | 251 | 1.2849 | 1.6510 | 1.6510 | 1.9694 | 2.3413 | 2.5956 |